Dear Sir/Madam

CALIBRATION OF EQUIPMENT FOR PILE LOAD TEST BY SAC-SINGLAS ACCREDITED LABORATORIES

This circular is to remind the industry on the regulatory requirements relating to pile load tests carried out in connection with building works.

2 Under Regulation 39(2)(b) of the Building Control Regulations, any test for the purpose of Section 7A(2) of the Building Control Act is to be carried out in a SAC-SINGLAS accredited laboratory. These tests include calibration tests for equipment like load cells, pressure gauges and movement gauges used in pile load testing.

3 Before commencement of any pile load testing at site, Qualified Persons (QP) supervising the pile load test will have to inspect the test equipment to check that they are functional and properly calibrated. BCA would like to remind QP to exercise vigilance to check and verify the calibration reports issued by the laboratories.

4. QPs are to take note that not all laboratories are SAC-SINGLAS accredited, and that accreditation may only be for specific services rendered by these companies. QPs are therefore reminded to ensure that the laboratory that you have engaged to carry out the test is SAC-SINGLAS accredited for that specific scope of test. The accreditation status of companies and their scopes of accreditation can be found at the Singapore Accreditation Council’s website (www.sac-accreditation.gov.sg).

5. QPs are advised to check that each of the test equipment used in the pile load testing bears a valid calibration certificate, issued by a SAC-SINGLAS accredited laboratory to the full capability or capacity of the test equipment. QPs should also check for the SAC accreditation mark on the endorsed calibration reports and certificates for the test equipment as proof that the services has attained accreditation from SAC, before allowing them to be used for pile load testing at site. A sample of an endorsed calibration report for load cell is shown in Annex A.

6 QPs supervising building works that require the use of load cells or hydraulic jacks to measure forces are also reminded to check and verify the calibration reports of these equipment. Examples of building work that require the use of these equipment include pre-loading of ERSS struts, prestressing, ground anchors, etc.
I would appreciate it if you could bring to the attention of your members the contents of this circular. Please contact Dr Yet Nai Song or Mr Kwa Chin Soon at Tel 6804 4600 or email kwa_chin_soon@bca.gov.sg, if you need further clarification. Thank you.

Yours faithfully

ER. KIEFER CHIAM
DIRECTOR
BUILDING ENGINEERING GROUP
For COMMISSIONER OF BUILDING CONTROL
CALIBRATION REPORT

Submitted by:

<table>
<thead>
<tr>
<th>Calibration Date</th>
<th>: 16/07/15</th>
<th>Report Number</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>UUT Brand / Model</td>
<td>:</td>
<td>Job Number</td>
<td>:</td>
</tr>
<tr>
<td>UUT Serial Number</td>
<td>:</td>
<td>Procedure</td>
<td>:</td>
</tr>
<tr>
<td>UUT Capacity</td>
<td>:</td>
<td>Test Location</td>
<td>:</td>
</tr>
<tr>
<td>UUT Display Brand / Model</td>
<td>:</td>
<td>Relative Humidity</td>
<td>41 ±10% R.H.</td>
</tr>
<tr>
<td>UUT Display Serial Number</td>
<td>:</td>
<td>Ambient Temperature</td>
<td>26.0 ±1.0°C</td>
</tr>
<tr>
<td>UUT Cable Brand / Model</td>
<td>: Hardwired to UUT</td>
<td>Date of Report</td>
<td>17/07/15</td>
</tr>
<tr>
<td>UUT Cable Serial Number</td>
<td>: Not Applicable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

METHOD OF CALIBRATION

The instrument was calibrated at Force Measurement Laboratory. The method used in the calibration is in accordance with

The laboratory’s acceptable environmental conditions during calibration is:

Temperature: 18°C to 28°C and Relative Humidity: 20% to 80%

The following tests were performed (Compression only):
1. Preloading: The instrument was preloaded 2 times at maximum force. The duration for each preload was 60 seconds.
2. Creep: The creep test was performed after the preload test. The maximum force was applied to the instrument for a duration of 60 seconds. The creep measurement was performed after the maximum force was removed.
3. Repeatability/Reproducibility (Rotation): There were 2 runs at 0°, 1 run at 120° and 1 run at 240°, all incremental forces only.

The mean indicated deflections for each applied loads were calculated from Runs 1, 3 and 4.

TRACEABILITY

The reference force transducer used is traceable to National Institute of Metrology (NIM, China) certificate number: , with the serial number: and display serial number:

The force measuring system was calibrated by National Metrology Centre, A*STAR, Singapore with the calibration report number:

Calibrated By:

Calibration Officer

Checked By:

Approved Signatory

The issuance of this report is subject to the conditions set out overleaf.
Results of Calibration

Creep Test

<table>
<thead>
<tr>
<th>Force State</th>
<th>ULT Reading (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Load</td>
<td>0.00</td>
</tr>
<tr>
<td>Full Load</td>
<td>5000.08</td>
</tr>
<tr>
<td>Zero Load @ 30sec</td>
<td>0.52</td>
</tr>
<tr>
<td>Zero Load @ 300sec</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Repeatability / Reproducibility (Rotation) Test

<table>
<thead>
<tr>
<th>Force (kN)</th>
<th>1st Run 0°</th>
<th>2nd Run 0°</th>
<th>3rd Run 120°</th>
<th>4th Run 240°</th>
<th>Mean</th>
<th>Deviation</th>
<th>Expanded Uncertainty</th>
<th>Expanded Uncertainty</th>
<th>Coverage Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>501.44</td>
<td>501.38</td>
<td>501.32</td>
<td>501.36</td>
<td>501.37</td>
<td>1.373</td>
<td>0.27</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>1000</td>
<td>1002.76</td>
<td>1002.72</td>
<td>1002.74</td>
<td>1002.74</td>
<td>1002.74</td>
<td>7.740</td>
<td>0.37</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>1500</td>
<td>1503.38</td>
<td>1503.32</td>
<td>1503.24</td>
<td>1503.36</td>
<td>1503.33</td>
<td>3.327</td>
<td>0.22</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>2500</td>
<td>2502.86</td>
<td>2502.82</td>
<td>2502.76</td>
<td>2502.83</td>
<td>2502.83</td>
<td>2.817</td>
<td>0.11</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>3000</td>
<td>3002.20</td>
<td>3002.24</td>
<td>3002.16</td>
<td>3002.20</td>
<td>3002.19</td>
<td>1.157</td>
<td>0.07</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>3500</td>
<td>3501.56</td>
<td>3501.48</td>
<td>3501.48</td>
<td>3501.52</td>
<td>3501.52</td>
<td>1.520</td>
<td>0.04</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>4000</td>
<td>4000.84</td>
<td>4000.80</td>
<td>4000.74</td>
<td>4000.79</td>
<td>4000.79</td>
<td>0.787</td>
<td>0.03</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>4500</td>
<td>4500.14</td>
<td>4500.20</td>
<td>4500.12</td>
<td>4500.16</td>
<td>4500.14</td>
<td>0.140</td>
<td>0.06</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>5000</td>
<td>4999.66</td>
<td>4999.77</td>
<td>4999.62</td>
<td>4999.68</td>
<td>4999.63</td>
<td>0.307</td>
<td>0.01</td>
<td>2.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Calculated Relative Error (%)

<table>
<thead>
<tr>
<th>Force (kN)</th>
<th>Reproducibility (b)</th>
<th>Repeatability (b')</th>
<th>Interpolation (c)</th>
<th>Zero (%)</th>
<th>Creep (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>0.024</td>
<td>0.012</td>
<td>0.013</td>
<td>0.009</td>
<td>0.038</td>
</tr>
<tr>
<td>1000</td>
<td>0.004</td>
<td>0.002</td>
<td>0.007</td>
<td>0.009</td>
<td>0.038</td>
</tr>
<tr>
<td>1500</td>
<td>0.009</td>
<td>0.004</td>
<td>0.006</td>
<td>0.009</td>
<td>0.038</td>
</tr>
<tr>
<td>2000</td>
<td>0.002</td>
<td>0.003</td>
<td>0.001</td>
<td>0.009</td>
<td>0.038</td>
</tr>
<tr>
<td>2500</td>
<td>0.004</td>
<td>0.001</td>
<td>0.003</td>
<td>0.009</td>
<td>0.038</td>
</tr>
<tr>
<td>3000</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.009</td>
<td>0.038</td>
</tr>
<tr>
<td>3500</td>
<td>0.002</td>
<td>0.002</td>
<td>0.003</td>
<td>0.009</td>
<td>0.038</td>
</tr>
<tr>
<td>4000</td>
<td>0.002</td>
<td>0.001</td>
<td>0.002</td>
<td>0.009</td>
<td>0.038</td>
</tr>
<tr>
<td>4500</td>
<td>0.001</td>
<td>0.001</td>
<td>0.003</td>
<td>0.009</td>
<td>0.038</td>
</tr>
<tr>
<td>5000</td>
<td>0.002</td>
<td>0.002</td>
<td>0.001</td>
<td>0.009</td>
<td>0.038</td>
</tr>
</tbody>
</table>

The computed outputs are derived by fitting the data using the following equations:

\[F = A + A1(R) + A2(R^2) + A3(R^3) \]

\[R = B + B1(R) + B2(R^2) + B3(R^3) \]

where:

\[A = 6.052636E-01 \]

\[A1 = 9.950372E-01 \]

\[A2 = 1.865146E-06 \]

\[A3 = -1.769844E-10 \]

\[B = -5.962212E-01 \]

\[B1 = 1.004956E+00 \]

\[B2 = -1.864334E+06 \]

\[B3 = 1.769075E-10 \]

\[F \] is the applied force and \(R \) is the ULT reading.

The reported measurement uncertainties were estimated at a level of confidence of approximately 95%.

The user should determine the suitability of the instrument for its intended use.

Calibrated By:

Calibration Officer
CIRCULAR DISTRIBUTION LIST

ASSOCIATIONS / SOCIETIES

PRESIDENT
INSTITUTION OF ENGINEERS, SINGAPORE (IES)
70, BUKIT TINGGI ROAD
SINGAPORE 289758
ies@iesnet.org.sg

PRESIDENT
ASSOCIATION OF CONSULTING ENGINEERS, SINGAPORE (ACES)
18 SIN MING LANE
#06-01 MIDVIEW CITY
SINGAPORE 573960
secretariat@aces.org.sg

PRESIDENT
SINGAPORE CONTRACTORS ASSOCIATION LIMITED (SCAL)
CONSTRUCTION HOUSE
1 BUKIT MERAH LANE 2
SINGAPORE 159760
enquiry@scal.com.sg

PRESIDENT
SINGAPORE INSTITUTE OF ARCHITECTS (SIA)
79 NEIL ROAD
SINGAPORE 088904
info@sia.org.sg

PRESIDENT
SOCIETY OF PROJECT MANAGERS (SPM)
MACPHERSON ROAD P.O.BOX 1083
SINGAPORE 913412
sprojm@yahoo.com

PRESIDENT
SINGAPORE INSTITUTE OF BUILDING LIMITED (SIBL)
70 PALMER ROAD,
#03-09C PALMER HOUSE
SINGAPORE 079427
josephine@sib.com.sg

PRESIDENT
REAL ESTATE DEVELOPERS’ ASSOCIATION OF SINGAPORE (REDAS)
190 CLEMENCEAU AVENUE
#07-01 SINGAPORE SHOPPING CENTRE
SINGAPORE 239924
enquiry@redas.com

PRESIDENT
SINGAPORE INSTITUTE OF SURVEYORS & VALUERS (SISV)
110 MIDDLE ROAD #09-00
CHIAT HONG BUILDING
SINGAPORE 188968
sisv.info@sisv.org.sg
PRESIDENT
SINGAPORE STRUCTURAL STEEL SOCIETY (SSSS)
1 LIANG SEAH STREET
#02-11/12 LIANG SEAH PLACE
SINGAPORE 189022
secretariat@ssss.org.sg

PRESIDENT
GEOTECHNICAL SOCIETY OF SINGAPORE
C/O PROFESSIONAL ACTIVITIES CENTRE
NUS FACULTY OF ENGINEERING
9 ENGINEERING DRIVE 1
SINGAPORE 117576
geoss@nus.edu.sg

PRESIDENT
PROFESSIONAL ENGINEERS BOARD, SINGAPORE (PEB)
52 JURONG GATEWAY ROAD, #07-03
SINGAPORE 608550
registrar@peb.gov.sg

PRESIDENT
BOARD OF ARCHITECTS (BOA)
5 MAXWELL ROAD
1ST STOREY TOWER BLOCK
MND COMPLEX
SINGAPORE 069110
boarch@singnet.com.sg

DIRECTOR
PROTECTIVE INFRASTRUCTURE & ESTATE
DEFENCE SCIENCE & TECHNOLOGY AGENCY
1 DEPOT ROAD #03-01J
SINGAPORE 109679
oyewhing@dsta.gov.sg

DEPUTY DIRECTOR
PROJECT DEVELOPMENT & MAINTENANCE BRANCH
MINISTRY OF EDUCATION
1 NORTH BUONA VISTA DRIVE
OFFICE TOWER LEVEL 9
SINGAPORE 138675
eng_wee_tong@moe.gov.sg

DIRECTOR
BEST SOURCING DEPARTMENT
PUBLIC UTILITIES BOARD
40 SCOTTS ROAD #18-01
ENVIRONMENT BUILDING
SINGAPORE 228231
koh_boon_aik@pub.gov.sg
lim_kim_tee@pub.gov.sg
DEPUTY CHIEF EXECUTIVE
INFRASTRUCTURE & DEVELOPMENT
LAND TRANSPORT AUTHORITY
1 HAMPSHIRE ROAD
BLOCK 8 LEVEL 1
SINGAPORE 219428
chong_kheng_chua@lta.gov.sg

DEPUTY DIRECTOR
PROJECT DEV'T & MGT SECT 1 (C&S)
BUILDING QUALITY GROUP
HOUSING & DEVELOPMENT BOARD
HDB HUB
480 LORONG 6 TOA PAYOH
SINGAPORE 310480
lkh4@hdb.gov.sg

DIRECTOR
TECHNICAL SERVICES DIVISION
JTC CORPORATION
THE JTC SUMMIT
8 JURONG TOWN HALL ROAD
SINGAPORE 609434
chwee.koh@jtc.gov.sg

DIRECTOR
BUILDING
PEOPLE’S ASSOCIATION
9 STADIUM LINK
SINGAPORE 397750
foo_soon_leng@pa.gov.sg

PRESIDENT
THE TUNNELLING AND UNDERGROUND
CONSTRUCTION SOCIETY SINGAPORE (TUCSS)
C/O CMA INTERNATIONAL CONSULTANTS PTE LTD
1 LIANG SEAH STREET
#02-12 LIANG SEAH PLACE
SINGAPORE 189022
info@tucss.org.sg

PRESIDENT
SOCIETY OF ROCK MECHANICS AND ENGINEERING GEOLOGY
1 LIANG SEAH STREET
#02-12 LIANG SEAH PLACE
SINGAPORE 189022
srmeg@cma.sg

DEPUTY CHIEF EXECUTIVE OFFICER
SENTOSA DEVELOPMENT CORPORATION
33 ALLANBROOKE ROAD, SENTOSA
SINGAPORE 099981
agencies_circulars@sentosa.com.sg
HEAD (FIRE SAFETY AND BUILDING CONTROL)
BUILDING AND INFRASTRUCTURE
DEFENCE SCIENCE & TECHNOLOGY AGENCY
1 DEPOT ROAD
DEFENCE TECHNOLOGY TOWER A
SINGAPORE 109679
HOW AH MENG
EMAIL: HAHMENG@DSTA.GOV.SG

MANAGER (ARCHITECTURAL PLANS)
BUILDING AND INFRASTRUCTURE
DEFENCE SCIENCE & TECHNOLOGY AGENCY
1 DEPOT ROAD
DEFENCE TECHNOLOGY TOWER A
SINGAPORE 109679
SEBASTIAN LIM HAI KONG
EMAIL: LHAIKONG@DSTA.GOV.SG

ALL CORENET E-INFO SUBSCRIBERS