The WSH (Design for Safety) Regulations will be effective from 1 Aug 2016. It requires stakeholders such as Developers, Designers and Contractors to work together to address the risk at source and plan for the construction work, so as to identify and eliminate, as far as reasonably practicable, foreseeable risk(s) to the safety or health of any person (i) carrying out or liable to be affected by construction work for the structure, (ii) for whom the structure is a workplace, including an individual who maintains or cleans the structure, or anything in or on the structure, or (iii) who carries out or is liable to be affected by the demolition of the structure.

The Design Phase is the earliest opportunity to incorporate Safety into a construction project. Just as productivity can be enhanced with early planning, so is the greatest impact for safety. Designing for safety starts at the conceptual and planning phases of a project with collective and conscious decisions by stakeholders about the design, methods of construction and later demolition, and also the materials used which enhance the safety of the building or structure. In 2008, WSH Council launched the Guidelines on Design for Safety in Buildings and Structures, followed by the DfS Coordinator Course in 2010. In addition to building DfS capabilities of stakeholders, WSH Council has developed the DfS Recognition Scheme which was launched in 2011. Consisting of the DfS Mark and DfS Award, the Scheme aims to recognize competent and outstanding projects that have addressed risk through design and hence ensure safe & timely completion of the project.

Institution of Engineers, Singapore

8 Dec 2017 to 8 Dec 2017

Design for Safety Appreciation course 33rd

Venue
IES Academy@Jurong East

Date and Time
8 Dec 2017 to 8 Dec 2017
0900 to1700
9am to 5pm
8 December 2017

Contact Details
Contact Person: Christine Lau
Email: christine.lau@iesnet.org.sg
Phone: 64639211
Fax:

Institution of Engineers, Singapore

11 Dec 2017 to 11 Dec 2017

Design Of Precast Concrete Elements For Hybrid Buildings

Hybrid construction mixes precast and in-situ. The first hybrid buildings started to appear in the 1960s. Now the biggest use of precast concrete is in hybrid buildings. Precast concrete is rarely covered at undergraduate level. This course aims to remedy that. The design code used is The Design code used is the SS EN 1992 series of Concrete Structures. Often, the full precast solution, namely precast beams, slabs, columns and walls, may be felt to be inappropriate for a particular building project. Luckily, it is not necessary to use precast frames in conjunction with individual precast elements; the benefits of precast (speed, quality and prestressing) and in-situ (cheap and robust) can be availed-of by combining the two. The combination of precast and in-situ concrete is termed hybrid to distinguish it from composite which usually implies steel plus in-situ concrete. It usually involves either precast vertical structure and in-situ horizontal structure, or in-situ vertical and precast horizontal.

Venue
IES Academy@ Jurong East 80
Jurong East St 21 #04-10 Devan
Nair Institute Singapore 609607

Date and Time
11 Dec 2017 to 11 Dec 2017
1400 to1715
2.00pm - 5.15pm
30 Nov 2017, Thursday

Contact Details
Contact Person: Lee Woon (Ms)
Email: hon.lw@iesnet.org.sg
Phone: 64611250 /64639211
Fax:
Risk Management Update with New Code of Practice 31ST Run ON 18 DEC 2017

Ever since the Workplace Safety and Health Act was enacted in Singapore in 2006, the safety scene in Singapore has been revolutionized. Starting with the introduction of mandatory risk management for the three hazardous industries namely, construction, manufacturing, and shipyards, the requirement was extended to six other sectors including medical facilities and eating places in 2008, and in September 2011 it covered all workplaces in Singapore. The Code of Practice for Risk Management was introduced in 2011, and revised in 2012. A further revision is under way and will be released shortly. While many industries have caught on to the new approach to reducing accidents and improving safety at the workplace through risk management, confusion persists in certain quarters on the scope of risk management, and the methodology for proper risk assessment and control. To guide the practitioners and broaden the coverage of the Act to all sectors, the course aims to review the procedures and recent changes to the Code of Practice. Apart from reviewing and emphasizing the previous guidelines mainly focusing on small and medium enterprises, the new Code expands the application to large enterprises, and suggests the numerical 5 by 5 risk matrix as a viable option, the most recent changes pertaining to the impact and assessment of human factors. The course will cover relevant portions of SS 506: Part 2: 2009, Singapore Standard on Occupational Safety and Health Management, pertaining to hazard identification, risk assessment and determining controls. Lecturer will bring into the course his extensive experience with risk management theory and practice.

Venue	Date and Time	Contact Details
IESA@JURONGEAST | 18 Dec 2017 to 18 Dec 2017 0900 to 1630 9AM TO 4.30PM 18 DEC 2017 | Contact Person: VERLINE CHIAM Email: verline.chiam@iesnet.org.sg Phone: 64604241(DIRECT)64639211(MAINLINE) Fax: |

FORMWORK DESIGN AND SAFETY WITH CODE OF PRACTICE SS5802012 29TH RUN ON 20 DEC 2017

Formwork structures have always been a highly hazardous item in the construction industry. Continuing failures of formworks in Singapore have raised considerable alarm in the industry, the government and the public. To address these concerns, and to update an outdated Code of Practice for formwork, a Workgroup was formed in 2012 to develop a new Code of Practice, SS580. This one-day course on formwork design and safety to revised standards and Eurocode aims to accomplish the following: Provide background material to and useful information on improved standards in this area for this critical topic in workplace safety; Present the basics of safe design of formwork structures and essential design requirements of SS580; Describe significant parts of the new Code of Practice for Formwork SS580:2012 to facilitate its use by designers and constructors; Review a number of failure of formworks in Singapore and abroad to convey an understanding of causes; Discuss techniques to identify and evaluate the hazards, and manage the risks; and, Offer practical guidelines for good practice in formwork design, erection, use, dismantling, inspection, and supervision. The focus will be on basic concepts and procedures currently in use for formwork in the construction industry. Objectives will include identification of principal contributory factors to formwork failures and their underlying root causes, and discussing how the new Code can eliminate or alleviate the problems.

Venue	Date and Time	Contact Details
IESA@JURONGEAST | 20 Dec 2017 to 20 Dec 2017 0900 to 1730 9AM TO 5.30PM 20 DEC 2017 | Contact Person: Verline Chiam Email: verline.chiam@iesnet.org.sg Phone: 64604241(DIRECT)64639211(MAINLINE) Fax: |

Module 3 & 4 Construction of Underground & Related Structures Basements & Tunnelling (15th Run)

Underground and related structures are of great significance to the local construction industry. Many structures have to be built below ground and their design and construction are of importance to those in the civil engineering profession. Resident Engineers and Resident Technical Officers need to be familiar with the construction and supervision of underground and associated structures, as such foundations, basements, tunnels and earth-retaining structures.

Venue	Date and Time	Contact Details
IES Academy | 20 Jan 2018 to 20 Jan 2018 0900 to 1715 9.00 am - 5.15pm 20 January 2018, Saturday | Contact Person: Wong Qiao Ting Email: qiao.ting@iesnet.org.sg Phone: 6460 4248 Fax: 65636030 |
Increasing Productivity: New Developments in Construction Method & Materials 6th Run

Development projects are increasingly demanding as the clients become more sophisticated and require their project to be built with better productivity and sustainability. At the same time, over the years there has been a gradual accumulation of practical experience around the world on specific methods of construction like prefabricated-prefinished volumetric construction (PPVC) and materials like self-compacting concrete (SCC) and cross laminated timber (CLT).

Venue	Date and Time	Contact Details
IES Academy@Jurong East	24 Jan 2018 to 28 Nov 2017, 1500 to 2200, 3pm - 10pm	Contact Person: Florence Lee
24 January 2018 (Wednesday)	Email: florence.lee@iesnet.org.sg	
	Phone: 64604248	
	Fax:	

You can unsubscribe from the CORENET newsletter via this unsubscribe link.